martes, 29 de marzo de 2011

EL PAPIRO RHIND. Antonio Mudarra 3º B

Papiro Rhind

En 1858 el egiptólogo escocés A. Henry Rhind visitó Egipto por motivos de salud (padecía tuberculosis) y compró en Luxor el papiro que actualmente se conoce como papiro Rhind o de Ahmes, encontrado en las ruinas de un antiguo edificio de Tebas. Rhind murió 5 años después de la compra y el papiro fue a parar al Museo Británico. Desgraciadamente en esa época gran parte del papiro se había perdido, aunque 50 años después se encontraron muchos fragmentos en los almacenes de la Sociedad histórica de Nueva York. Actualmente se encuentra en el Museo Británico de Londres. Comienza con la frase "Cálculo exacto para entrar en conocimiento de todas las cosas existentes y de todos los oscuros secretos y misterios"

El papiro mide unos 6 metros de largo y 33 cm de ancho. Representa la mejor fuente de información sobre matemática egipcia que se conoce. Escrito en hierático, consta de 87 problemas y su resolución. Nos da información sobre cuestiones aritméticas básicas, fracciones, cálculo de áreas, volúmenes, progresiones, repartos proporcionales, reglas de tres, ecuaciones lineales y trigonometría básica. Fue escrito por el escriba Ahmes aproximadamente en el año 1650 a.C a partir de escritos de 200 años de antigüedad, según reivindica el propio Ahmes al principio del texto, aunque nos resulta imposible saber qué partes corresponden a estos textos anteriores y cuáles no.

Se conoce muy poco sobre el objetivo del papiro. Se ha indicado que podría ser un documento con claras intenciones pedagógicas, o un cuaderno de notas de un alumno. Para nosotros representa una guía de las matemáticas del Antiguo Egipto, pues es el mejor texto escrito en el que se revelan los conocimientos matemáticos. En el papiro aparecen algunos errores, importantes en algunos casos, que pueden deberse al hecho de haber sido copiados de textos anteriores. Aunque en la resolución de los problemas aparecen métodos de cálculo basados en prueba y error, sin formulación y muchas veces tomados de las propias experiencias de los escribas, representa una fuente de información valiosísima.

En cuanto al autor, poco se conoce de él. Por su escritura parece que Ahmes no era un simple escriba, pero se desconocen los detalles de su educación.



como en el caso anterior selecciona el "número rojo" 28, de forma que al aplicarlo a las fracciones de la derecha pueda obtener fracciones sencillas. El razonamiento es el siguiente:

1/28 partes de 28 es 1
1/56 partes de 28 es 1/2
1/128 partes de 28 es 1/4

y ahora debemos determinar cuantas partes de 28 son iguales a 1 + 1/2 + 1/4, es decir hemos de buscar un número tal que al multiplicarlo por 1 + 1/2 + 1/4 nos de 28. Ahora nos encontramos con una solución bastante sencilla, en otros casos no es tan obvia. El razonamiento es:

1 ------------- 1 + 1/2 + 1/4
2 ------------- 3 + 1/2
4 ------------- 7
8 -------------14
16 ----------- 28

Luego el número buscado en este caso es el 16. Esto significa que la solución del problema es 16.

¿El alumno, e incluso el escriba comprendían lo que estaban haciendo, o se limitaban a aplicar lo que les habían enseñado, cambiando los números según las necesidades? Es difícil responder, pero quizás el "profesor" pudiese ver más allá, y comprender el procedimiento, pero si fuese así lógicamente el método de la multiplicación lo debía tener totalmente asumido y en ese caso deberían haber encontrado una forma más sencilla de resolver este tipo de problemas.

No hay comentarios:

Publicar un comentario